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A B S T R A C T   

This paper proposes a new methodology for modelling chronological data in archaeology. We introduce the 
concept of “chronological network”, a flexible model for representing chronological entities, synchronisms be
tween them, and other chronological constraints such as termini post/ante quem and duration bounds. We propose 
a procedure for checking the consistency of a chronological network and for refining dating estimates from the 
available synchronisms and constraints. We introduce ChronoLog, a chronology software application that allows 
users to build a chronological network interactively. The software automatically checks the consistency of the 
network and computes the tightest possible chronological range for each entity, within seconds. ChronoLog is 
freely available online at http://chrono.ulb.be.   

1. Introduction 

Our understanding of the ancient past often takes the shape of a 
network. Synchronisms between kings, historical eras, archaeological 
strata and ceramic types induce a complex web of interconnected 
chronological objects. An important aspect of such a web is the strong 
dependency among its components: a change at one end of the network 
can directly impact dates anywhere along the network. Changing a 
king’s regnal dates, for example, can directly affect the dating of an 
archaeological stratum containing objects bearing that king’s name. 
This can in turn affect the dating of ceramic types found in that stratum, 
and so on. Although chronological networks are frequently informally 
described in archaeological literature, they are often not explicitly rec
ognised as such and, as a result, have never been fully formalised. This 
paper presents a formalised framework of chronological networks in 
archaeology. We first describe a conceptual model of chronological 
networks, featuring chronological sequences, upper/lower bounds on 
dates and durations, and several types of synchronisms (Section 2). This 
leads to a detailed mathematical model of chronological networks 
(Section 3). Based on this mathematical formalism, we introduce effi
cient algorithms for solving basic chronological problems. Two partic
ular problems – consistency checking (i.e., verifying that the network 
features no contradictions) and tightening (i.e. computing the tightest 

possible chronological ranges for each date and duration) are of para
mount importance. Readers not concerned with the details of mathe
matical modelling can skip Section 3, and move on to Section 4, which 
describes ChronoLog – software that facilitates construction of chrono
logical networks, checks their consistency and provides tightened esti
mates of each boundary and duration, quickly and interactively. We 
illustrate the use of ChronoLog with a case study related to the Egyptian 
26th dynasty (Section 5). Finally, Section 6 discusses future perspectives 
for both the model and the software implementation. 

1.1. Related works 

The question of representing and manipulating information about 
time has been long studied in the field of artificial intelligence, see for 
example the seminal works of Allen (1984, 1991). While some of the 
techniques we develop in Section 3 are related to these works (like the 
graph-based representation of the chronological constraints), the latter 
are very general and do not focus on needs related to archaeological 
data. Moreover, these earlier works are mainly concerned with the 
representation of the data, while we also present algorithms and software 
that directly address archaeological problems. 

Allen’s early work (Allen, 1984) characterised 13 basic relations 
among temporal intervals. These relations were originally defined in the 
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framework of temporal logic, but were later applied to archaeology by 
Holst (2004). The characterisation of chronological relations presented 
in this paper (Section 2.1) expands on Allen and Holst. 

An interesting related work is that of Kromholz (1987), who pro
posed in 1987 to use off-the-shelf business-oriented computer programs 
to formalise archaeological chronology problems. These programs use 
typical models from the business world (PERT and Gantt charts) and rely 
on classical algorithmic methods (the co-called “Critical Path Method”) 
to analyse them and test different chronological hypotheses. Kromholz 
rightfully asked “how to deal with the immense quantity of data offered 
by every spadeful of earth we disturb” (Kromholz, 1987, p. 119) and we 
fully concur with his pioneering approach. His model differs from ours in 
several ways. To begin with, the data models are different. Ours allows 
us to model more diverse types of chronological constraints (see Section 
2.1). Furthermore, the two approaches do not address exactly the same 
questions and rely on totally different algorithmic techniques. Finally, 
the technique proposed by Kromholz uses commercially-produced 
business-oriented software not originally intended for archaeology, 
which requires the user to shuttle between the terminologies of two 
widely different disciplines. The solution proposed in this paper is aimed 
at archaeologists’ needs, with a data model consisting of more 
archaeologically-meaningful basic elements. 

Our work can also be compared to more traditional formal ap
proaches for stratigraphic analysis, such as the frequently-used Harris 
matrix (Harris, 1979) or the partial order scalogram analysis of relations 
by Sharon (1995). These approaches, however, deal only with relative 
chronology, while our approach considers both relative and absolute 
chronology aspects in a unified model. As such it comes close to the 
approach of Desachy (2016), who augments the traditional Harris ma
trix approach by adding to it, as in our model (see Section 2 below), 
upper and lower bounds on the start date, end date, and duration of each 
stratigraphic unit. Our approach features an additional set of possible 
synchronisms, a more powerful algorithmic tool for detecting in
consistencies and new algorithms for computing tight time and duration 
ranges (see Section 3). 

The work closest to ours is that of Falk (2020), who implemented a 
chronological tool called Groundhog (see http://www.groundhogch 
ronology.com/), which allows building of chronological networks and 
testing them for internal contradictions. His approach differs from ours 
in several aspects. First, our model allows for more diverse types of 
chronological constraints (see Section 2). Second, Falk’s approach relies 
on exhaustive search, by generating all possible combinations of dates, 
thus yielding exponential-time algorithms, whereas we employ a more 
efficient approach, using polynomial-time algorithms (see Section 3); 
this means that Falk’s approach is unlikely to be able to handle networks 
of large sizes in short processing time. Our technique can scale and 
handle networks with several hundred chronological constraints in less 
than a second, allowing for a truly interactive experience for the user 
(see Section 4.3.2). 

Other formal approaches to archaeological chronology, not directly 
related to ours, rely on fuzzy logics (Niccolucci and Hermon, 2015), 
aoristic analysis (Crema, 2012), and evidence density estimation 
(Demján and Dreslerová, 2016). For the Bayesian approach in radio
carbon, and its relation to ChronoLog, see Section 4.3.1. 

2. Chronological networks 

First, a comment about our notation. In the discussion that follows, 
terms that receive a formal definition are capitalised, e.g., Chronological 
Networks, Time-periods, Sequences, and Chronological Relations. 

We start by introducing our formalised model of Chronological 
Networks. The model allows representation of basic chronological units 
termed “Time-periods”, grouped in “Sequences” and related to each 
other through “Chronological Relations”. We also discuss the advan
tages of relying on Chronological Networks for formalising archaeo
logical data and queries. 

2.1. Modelling the network 

Our model of Chronological Networks features three types of objects: 
“Time-periods”, “Sequences”, and “Chronological Relations”. 

2.1.1. Time-periods and sequences 
Time-periods. A Time-period represents a continuous interval of 

time, such as a king’s reign, a historical era, or the time-span of an 
archaeological stratum (see Fig. 1). It is characterised by a start date, an 
end date, and a duration. Our model allows for the following types of 
chronological constraints on dates: a start/end date can be unknown, 
known (e.g. 1984 CE), lower bounded (not earlier than 1984 CE), upper 
bounded (not later than 1984 CE) or known within a range (e.g. between 
1984 and 1990). In the same way, durations can also be unknown, known 
(e.g. 5 years), lower bounded (at least 5 years), upper bounded (at most 5 
years) or known within a range (e.g. between 5 and 10 years). A Time- 
period is thus represented by at most six numbers: minimum duration, 
maximum duration, earliest start date, latest start date, earliest end date, 
latest end date. Clearly, dates and durations are related since the dura
tion of a Time-period is defined as the difference between its end and 
start dates. However, dates and durations are modelled separately since 
this allows constraints to be set independently on dates and durations. 
We use the following graphical notation: a Time-period is represented as 
a rectangle with the Time-period’s name on top, its duration in the 
center, its start date at the bottom left corner and its end date at the 
bottom right corner. Ranges are represented with square brackets (e.g. 
“[1984, 1990]”), upper bounds with the smaller-or-equal “≤” sign (“≤
1984”), lower bounds with the greater-or-equal “≥” sign (“≥ 1984”) and 
unknown dates or duration with a question mark (see Fig. 1). All the 
examples presented in this paper assume that the unit of time is the year 
(our model of Chronological Networks does however work in the same 
way for any other unit of time). 

Sequences. A Sequence represents a set of consecutive Time-periods, 
with no gaps between them (see Fig. 2). Hence, the end date of a Time- 
period always equals the start date of the next Time-period in the 
Sequence. In case one needs a Sequence that does feature a gap, an 
additional Time-period representing the gap must be inserted in the 
Sequence. Our model allows for the definition of Sequences having ab
solute chronology (known dates and duration, Fig. 2a), floating Se
quences (known durations but unknown dates, Fig. 2b) or Sequences 
partially anchored in time (with partial knowledge of the start/end 
dates). 

2.1.2. Chronological relations 
Chronological Relations express diverse types of relationships be

tween two Time-periods. This section presents a wide set of Chrono
logical Relations relevant for archaeological modelling. Chronological 
Relations are often referred to as “Synchronisms” in archaeological 
literature, though not all are strictly synchronic (see below). 

Synchronic relations. A contemporaneity synchronism between two 
Time-periods A and B imposes that A and B have at least one unit of time 
in common. More precisely, it imposes that A cannot start after the end 
of B and that B cannot start after the end of A (see for example Holst, 
2004, p. 136). We define synchronic relations as the contemporaneity 
synchronism and special cases thereof (see below). Table 1 presents the 
contemporaneity synchronism, with a suggested notation, a graphic 
view of its four base cases, and a mathematical expression of its se
mantics. The contemporaneity synchronism is archaeologically relevant 
for cases of contemporaneity between kings, historical/archaeological 
eras, ceramic types, or archaeological strata. It is the most general type 
of synchronism, as it only imposes the presence of at least one common 
unit of time between the Time-periods, without any additional con
straints. Table 2 presents more precise types of synchronisms, each of 
which is a special case of the contemporaneity synchronism: 
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• Inclusion synchronisms: A Time-period is entirely contained inside 
another. An example is an archaeological stratum that belongs solely 
to a given archaeological era (e.g. “Stratum V is included in the Iron 
Age II”). 

• Overlap synchronisms: Two Time-periods, besides sharing an inter
section, each feature an extent of time not included in the other 
Time-period. An example is ceramic types that are consecutive, yet 
have a time of common production.  

• Start Period synchronisms: The start of a Time-period is contained in 
another Time-period. An example is an archaeological stratum that 
starts during a given king’s reign.  

• End Period synchronisms: The end of a Time-period is contained in 
another Time-period. An example is an archaeological stratum that 
ends during a given king’s reign.  

• Synchronised boundaries: The boundaries (i.e. the start or end dates) 
of two Time-periods are equal. For example, cases of several 
archaeological strata that were destroyed during the same event. 

Asynchronic relations. An asynchronism is defined as a Chrono
logical Relation between two Time-periods that have no unit of time in 
common. The asynchronisms included in our conceptual model are “A 
ends before the start of B” and “A starts after the end of B”. Table 3 
presents these asynchronisms, with their formal semantics and sug
gested notations. 

Fig. 1. Three examples of Time-periods: Time-period A is fully known, Time-period B has unknown start and end dates, but a known duration, Time-period C has 
partial knowledge of its start/end dates and duration. 

Fig. 2. Two examples of Sequences, one (Egyptian 26th dynasty) with full knowledge of dates and durations and the other (Egyptian 15th dynasty) with only 
duration bounds (Kitchen, 2000; Ryholt, 1997). 
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Ordered boundaries. Table 4 presents ordered boundaries, Chrono
logical Relations that represent an order between start and end dates 
(boundaries). These Relations are not necessarily synchronic or 
asynchronic. 

Delay synchronisms. Table 5 presents delay synchronisms, a cus
tomisable type of Chronological Relation which expresses an exact, 
minimum or maximum delay between two boundaries. 

Graphical notations. Chronological Relations are represented by a 
line (for symmetric relations) or an arrow (for non-symmetric relations) 
connecting two Time-periods (see Fig. 3). The synchronism’s name is 
written above the line or arrow. 

In the sequel, we will refer to the data model of chronological net
works presented here as the ChronoLog data model, named after the 
software application presented in Section 4. 

2.1.3. Expressiveness of the model 
Expressiveness. The model presented above allows us to represent 

most sorts of relevant archaeological knowledge. It works for absolute 
chronologies (known start and end dates) but also for relative chronol
ogies (unknown, or partially known, start and end dates). The model can 
also deal with gaps in a stratigraphic sequence (as after a major 
destruction in a site) by inserting gap Time-periods between Time- 
periods representing strata. Co-regencies can be handled by inserting a 
co-regency Time-period between two “sole reign” Time-periods of the 
same Sequence. Partial co-existence of two succeeding pottery types (or 
cultural phases) can be represented in the same way, by creating a third 
Time-period between the two pottery Time-periods, within the same 
Sequence. Alternatively, one can also create two single-Period ceramic 
sequences, one for each pottery type, and link them with an Overlap 
synchronism. Discrete historical events (say the Fall of Constantinople) 
can be represented by a Time-period having a zero duration. In the same 
way, single-burial tombs will also be allotted a zero duration, and multi- 
burial tombs a non-zero duration. 

Limitations. Our model also presents a number of limitations. For 
example, it cannot model a reign of “5 or 15” years, although such 
constraints do occasionally occur in archaeology, due to badly preserved 
numerals on inscriptions. In such a case, we would need to use a weaker 
constraint, namely the range “[5–15]” years. The same limitation also 
applies to start/end dates. Furthermore, Chronological Relations that 
necessitate a or-operator also fall outside of the model (note that all the 
Chronological Relationships presented above feature only and-re
lationships). An example of such a Chronological Relation is the General 
Asynchronism, defined as “A ends before the start of B or A starts after the 
end of B”. The reason for limiting ourselves to and-relationships is in 
order to be able to analyse the network using fast algorithms (see Section 
3 below and Geeraerts et al., 2017). 

2.1.4. Facing archaeological complexity 
This section discusses how the ChronoLog data model can be applied 

to real-life archaeological data. As formal modelling objects, ChronoLog 
Time-periods have a unique start and end date, and ChronoLog Se
quences contain Time-periods in direct succession, without gaps or 
overlaps. Such simplified definitions directly fit only specific types of 
archaeological data, such as strata delimited by destruction layers, and 
kings reigning in direct succession. Archaeological periods however 
(representing cultural phases, say Late Bronze I, or Iron Age II), as 
modern abstractions of ancient material cultures, do not have a single 
start and end date, since given material traits appear gradually, and can 
start at different times in different regions. One archaeological context 
can already exhibit, say, Iron Age II material characteristics, while 
another contemporary context still exhibits Iron Age I characteristics. 
Furthermore, consecutive cultural phases always feature a certain 
amount of overlap with each other, as given material traits do not 
disappear overnight, but coexist with new ones, even in the same region. 
We show here that the ChronoLog data model has the required flexibility 
to describe even such complex cases. 

First, although archaeological periods do not have a single start and 
end date, archaeologists do routinely grant them approximate dates 
(“We must therefore place the boundary between [Corinthian] LG and EPC 
very near 720 B.C.” [Coldstream, 2008, p. 316]), absolute bounds (“This 
would place the start of Middle Cypriote III earlier than 1700 B.C.” [Mer
rillees, 2002, p. 6]), or relative bounds (“there can be no doubt that LC 
[Late Cypriot] IA started before the end of the Second Intermediate Period.” 
[Merrillees, 1992, p. 50]). Such cases can be modelled within the 
ChronoLog data model by using ranges, bounds and Chronological Re
lations, respectively. The problem of an overlap between two archaeo
logical periods can be handled either by inserting an overlap 
Time-period between the two archaeological periods, or by splitting 
them into two ChronoLog Sequences and adding an overlap synchronism 
between them. Finally, the problem of regional changes can be dealt 
with by building several regional sequences, instead of one master 
sequence. 

We illustrate these techniques with an example from Greek archae
ology (Coldstream, 2008, p. 327–330). Fig. 4a presents an excerpt of 
Coldstream’s chronological chart of Geometric ceramic styles, featuring 
three regional sequences. The Attic sequence is approximated in Cold
stream’s chart as a pure sequence, with no overlaps. The Corinthian and 
Argive sequences, however, do show an overlap between the EG and MG 
phases, justified thus by Coldstream: “In Corinthian and Argive, the grave 
groups show that the transition from EG to MG was more gradual than in 
Attica.” (Coldstream, 2008, p. 328). The chart does give precise figures 
for most transitions (900, 875, 850, 800) but the accompanying text 
explicitly notes that these figures are approximate (Coldstream, 2008, p. 
327–329). Fig. 4b presents a simple version of Coldstream’s chart using 
the ChronoLog data model. The Attic sequence is modelled as is, using 
one ChronoLog sequence, without overlaps. The Corinthian sequence 
was modelled using an extra Time-period representing the EG-MG I 
overlap, which, in Coldstream’s chart, starts after 840 and finishes in 

Table 1 
The contemporaneity synchronism, with its four base cases, suggested notation, and formal semantics. In the images, time is assumed to flow from above to below.  

Name Image Notation Semantics 

Contemporaneity synchronism A ∼ B  end(A) ≥ start(B) and end(B) ≥ start(A)
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825. The Argive EG II-MG I overlap was modelled in the same way. Fig. 5 
presents alternative modelling options. We first show an alternative 
modelling for the Corinthian EG-MG I overlap, where the EG and MG I 
are connected by an overlap synchronism, rather than using an overlap 
Time-period (Fig. 5b). ChronoLog also allows to explicitly model the 
approximate aspect of Coldstream’s transition figures, for example by 
widening them to 20-year ranges (Fig. 5c). 

In short, the ChronoLog data model allows to express complex 
archaeological realities by building models of increasing size and 
complexity. A fully flexible model would ideally feature regional se
quences (rather than one master sequence), ranges for every transition, 

and overlaps between every pair of successive phases. For modelling 
specific ceramic types (say Cypriot Base-Ring I), one could even use two 
separate Time-periods, representing the type’s production and use, 
respectively. Both would share a common start, but use would end later 
than production. One must remember however that a model is, by 
definition, a conventional and approximated description of reality. It is 
up to the user to decide on the model’s degree of precision, according to 
the needs of his research. The ChronoLog data model cannot solve the 
inherent difficulties of defining archaeological phases, which are purely 
a matter of archaeological judgement. It rather aims at providing ar
chaeologists with a practical tool for building chronological models and 

Table 2 
List of specialised cases of the contemporaneity synchronism, with suggested notations and formal semantics. Synchronisms have been paired with their inverse 
relation, except for synchronised boundaries, which have no inverse relations. In the images, time is assumed to flow from above to below.  

Name Image Notation Semantics 

Inclusion synchronisms 

A is included in B A⊆B  start(A) ≥ start(B) and end(A) ≤ end(B)

A includes B A⊇B  start(A) ≤ start(B) and end(B) ≤ end(A)

Overlap synchronisms 

A overlaps with succeeding B A ≤ B  start(A) ≤ start(B) ≤ end(A) ≤ end(B)

A overlaps with preceding B A ≥ B  start(B) ≤ start(A) ≤ end(B) ≤ end(A)

Start Period synchronisms 

A starts during B A↼B  start(B) ≤ start(A) ≤ end(B)

A includes the start of B A⇀B  start(A) ≤ start(B) ≤ end(A)

End Period synchronisms 

A ends during B A↽B  start(B) ≤ end(A) ≤ end(B)

A includes the end of B A⇁B  start(A) ≤ end(B) ≤ end(A)

Synchronised boundaries 

Synchronous start A⊤B  start(A) = start(B)

Synchronous end A⊥B  end(A) = end(B)

Equality A = B  start(A) = start(B) and end(A) = end(B)

A precedes immediately B end(A) = start(B)

A follows immediately B end(B) = start(A)
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deriving chronological information from them (see Sec. 2.2). 
Finally, ChronoLog enables archaeologists to explicitly model their 

definition of an archaeological period (say “Late Bronze IIA”), by using a 
dateless (i.e. floating) Time-period, and appropriate synchronisms be
tween that period and its defining artifacts (fossiles directeurs) and strata. 
In this way, the given archaeological period is not a vaguely-defined 
“black box”, nor an input of the chronological model, but rather an 
output of the model, inheriting its absolute chronology from the more 
concrete Time-periods representing strata and artifact types. Should new 
data later modify our understanding of that archaeological period, we 
could directly update its definition in the model (by adding or removing 
synchronisms with specific artifact types and strata), in order to assess 
how this update affects the period’s chronology. 

2.1.5. Example: the kingdom of ChronoLand 
We close this section by introducing a “toy” example, dubbed 

ChronoLand, that we will use as a running example throughout the rest of 
this paper. In the Kingdom of ChronoLand, Kings K1 and K2 reigned in 
succession. We do not know their precise reign dates, but both reigns are 
known to have occurred between 1200 and 1300 CE. We also know from 
ancient annals that King K1’s reign did not exceed 10 years, and we 
know from epigraphic sources that King K2 reigned at least 35 years. 
Recent excavations at ChronoCity, the capital city of ChronoLand, have 
unearthed two archaeological strata: S1 and S2. The earlier stratum, S1, 
was built on bedrock, and contained an in-situ stela of King K1, claiming 
he built ChronoCity. The latest stratum, S2, was destroyed by fire in a 
heavy conflagration. According to ancient annals, the city was destroyed 
during the reign the reign of King K2 and was never reoccupied. Finally, 
we assume that each of our strata has a duration of at least 20 years and 
at most 100 years. The modelling of these data as a Chronological 
Network is shown in Fig. 6a. The Chronological Network synthesises in a 
clear and unambiguous way the data derived from all our sources. We 
discuss below the computational operations possible on this network 
and the conclusions that can be drawn from them. 

2.2. Querying the network 

We now wish to define two basic operations that a user might want to 
perform on a Chronological Network. 

2.2.1. Consistency check 
The consistency check operation verifies whether the encoded chro

nological data feature a contradiction. As an example, a slight variant in 
the previous ChronoLand example (see Fig. 7) yields a non-consistent 
network. In this variant, King K2’s duration is not set to at least 35 
years, but rather to at most 25 years. Why is such a model not consistent? 
The two upper bounds on K1 and K2 yield a 35 years upper bound on the 
dynasty’s duration. However, the two strata S1 and S2 have a combined 
duration of at least 40 years and therefore cannot be included within the 
duration of the ChronoLand dynasty, which is at most 35 years (10 +
25). In the simple case of ChronoLand, this contradiction can be detected 
by the “naked eye”. In larger networks, featuring dozens of Time-periods 
and synchronisms, only an automated consistency check is capable of 
detecting all possible faults. A formal algorithm for consistency check of 
Chronological Networks will be presented in Section 3. 

2.2.2. Tightening 
A Chronological Network as defined above gathers all the chrono

logical information known by the researcher. Based on this input in
formation, more knowledge can be deduced regarding the dates and 
durations of the Time-periods. The tightening operation is the search for 
the tightest possible bounds for each start date, end date, and duration. 
These bounds are optimal, in the sense that they characterise exactly the 
set of allowed values for the start/end dates and durations. Any value 
outside these bounds violates a constraint of the network. And any 
further restriction of a bound would imply rejecting an allowed value, i. 
e. one that does not violate any constraint. In practical terms, the 
tightening operation makes all upper bounds as small as possible (e.g. a 
1280 upper bound for a date is more precise than 1300), and all lower 
bounds as large as possible (e.g. 1220 is more precise than 1200). The 
result of the tightening operation applied to ChronoLand is shown in 
Fig. 6b. Some of the new bounds are straightforward (e.g. the 1200 latest 
start of K1 derives from the 1200 earliest start of K1) while others are 
more complex (see below). Where do those improved bounds come 
from? Typically, they come from some given input data that propagates 
along the Network from one Time-period to another, following a trail of 
Chronological Relations. As an example, let us look at the 1240 earliest 
end of K2. It derives from the following considerations:  

1. K1 starts after 1200  
2. S1 starts during K1, hence it also starts after 1200  
3. S1 lasts at least 20 years, hence it ends after 1220 

Table 3 
List of asynchronisms, with suggested notations and formal semantics. In the 
images, time is assumed to flow from above to below.  

Name Image Notation Semantics 

Ordered asynchronisms 

A ends before the start of B A≪B  end(A) < start(B)

A starts after the end of B A≫B  start(A) > end(B)

Table 4 
List of ordered boundaries, with suggested notations and formal semantics. 
Synchronisms have been paired with their inverse relation. In the images, time is 
assumed to flow from above to below.  

Name Image Notation Semantics 

Ordered start 

A starts before the start of B A < B  start(A) < start(B)

A starts after the start of B A > B  start(A) > start(B)

Ordered end 

A ends before the end of B A < B  end(A) < end(B)

A ends after the end of B A > B  end(A) > end(B)

Ordered start/end 

A starts before the end of B A < B  start(A) < end(B)

A ends after the start of B A > B  end(A) > start(B)

Table 5 
Delay synchronisms.  

Delay synchronisms 

A
{

starts
ends

⎧
⎨

⎩

exactly
at least
at most

X years
{

before
after

{
start of
end of B   
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4. S2 starts when S1 ends, hence it also starts after 1220  
5. S2 lasts at least 20 years, hence it ends after 1240  
6. S2 ends during K2 hence K2 ends after S2 does, hence after 1240. 

Such an explanation for a tightened bound is called a trace. It consists 
of a path along the network, starting (in this example) from one given 
source (the 1200 earliest start of K1) and propagating along the network 
from K1 to K2, via S1 and S2, following the two given synchronisms. 
Fig. 6c provides a graphical view of this trace. 

2.2.3. Discussion 
The ChronoLand example shows that searching for the tightest 

ranges without the help of a computer is not easy, even in a simple 
example, let alone in a real archaeological case featuring hundreds of 
Time-periods and constraints. One can also easily miss the optimal 
propagation path. In the above example (earliest end of K2), one could 
easily have taken an alternative path, starting from K1 and going directly 

to K2, resulting in a 1235 earliest end of K2 (through K2’s 35 years 
minimum duration) rather than the optimal 1240. Note also that in some 
cases, the tightening process features unexpected phenomena, as in the 
above example, where a Sequence having no absolute chronology of its 
own (S1 and S2) helped tighten the date-ranges of Time-periods that do 
have an absolute chronological estimate as input (K1 and K2, included 
between 1200 and 1300). In archaeological research, failing to apply the 
tightening procedure fully and correctly will often result in sub-optimal 
chronologies. Indeed, whereas chronological papers often do provide 
the sources of their absolute chronology (though often not in a full and 
formal way), seldom do they present the full consequences of this prior 
knowledge. In the sequel of this paper, the bounds encoded in the 
network before the tightening procedure will be called input bounds. 
They represent chronological information established (known or 
hypothesised) a priori by the researcher. The bounds resulting from the 
tightening procedure will then be called computed bounds, since they 
need to be calculated (see Section 3). 

Fig. 3. Graphical notations for Chronological Relations (dates and durations are omitted) (Bryce, 2005; Johnston, 2016).  

Fig. 4. Modelling regional archaeological periods, with and without overlaps.  
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2.3. Using the network 

2.3.1. Practical usage 
The operations described above allow to check the global impact of 

local changes to the network and to test chronological hypotheses, as 
described below. 

Checking the impact of local changes. What if we added a 70 years 
upper bound to King K1’s reign (in addition to the 35 years lower 
bound)? Surely such an upper bound is quite realistic, since seldom in 
History has a king reigned more than 70 years. How would this new 
constraint affect our network? Will it affect any of the tightened ranges, 
and how? The answer to this question is shown in Fig. 8: the maximum 
durations of S1 and S2 have been reduced from 80 years to 60 years. This 
result is not easy to obtain manually. We have a 60 years upper bound 
because the full length of the ChronoLand dynasty is now at most 80 
years (10 + 70), while each stratum has at least 20 years. Since the 
stratigraphic sequence is included in the dynasty’s length (via the “starts 
during” and “ends during” synchronisms), each stratum can have at 
most 60 years (80–20). More generally, a local change (addition, 
removal, or update of a constraint) can have three outcomes: (1) no 
computed range is affected, (2) at least one computed range is affected, 
(3) a contradiction is created. 

Testing chronological hypotheses. We already know from our 
inputs that Stratum S1 was built by King K1. Is it possible that he also 
built Stratum S2? Note that the answer does not pop up immediately by 
simply looking at the computed bounds (Fig. 6b): the computed start 
date of S2 ([1220,1280]) could apparently fit both in K1’s reign (start 
date in [1200,1260], end date in [1200,1265]) and in K2’s reign (start 
date in [1200,1265], end date in [1240,1300]). To check the hypothesis 
that King K1 built Stratum S2, we add a synchronism “S2 starts during 
K1” and check the feasibility of the network. The resulting network is not 
consistent. If S2 started during K1’s reign, his reign would have needed 
to encompass the whole duration of Stratum S1 (which was built during 
his reign, see above), hence it would have lasted at least 20 years, which 

contradicts the 10 years maximum duration of K1. Hence, although it 
was not obvious at first sight, our set of input data does in fact imply that 
only King K2 could have built Stratum S2. In other words, a chrono
logical network hides much more knowledge than appears at first sight. 
This shows that in many practical archaeological cases, important 
chronological conclusions might have been overlooked by the re
searchers, through lack of a computational tool. 

2.3.2. Advantages 
We end this section by listing the advantages of the formal approach 

to Chronological Networks:  

1. Clear disclosure of all ground hypotheses. All the hypotheses from 
which the final chronology derives are explicitly laid out as inputs in 
the Chronological Network. Each range of the final chronology can 
therefore be entirely justified in terms of these inputs, by using 
traces. There are thus no hidden assumptions, common knowledge, 
circular reasoning, or “rules of thumb” involved in the process of 
chronology-building. Ideally, the ground hypotheses should be un
disputed facts of chronology, but one might also want to take specific 
(debated) hypotheses as ground inputs, in order to test whether these 
hypotheses are valid or what their precise consequences would be on 
the overall network. Furthermore, the full disclosure of inputs allows 
contenders of a given chronology to simply change the inputs they do 
not agree with, and recompute the tightneded ranges in order to 
obtain an alternative chronology.  

2. Separation between the combinatorial structure of the network and its 
absolute chronology. In our approach, the combinatorial structure of 
the network (given by the Sequences and Chronological Relations) is 
clearly separated from the aspects of absolute dating. The latter are 
represented by the adjunction of chronological estimates only at 
some specific points in the network (in our case, the 1200 earliest 
start of K1 and the 1300 latest end of K2) and the rest of the absolute 
chronology, for all Time-periods, is then computed automatically by 

Fig. 5. Three different options for modelling Coldstream’s sequence of Corinthian Late Protogeometric to Middle Geometric I (see Fig. 4a). Fig. 5a and 5b show two 
equivalent ways to represent an overlap: with a Time-period or an overlap synchronism. Fig. 5c shows how to add uncertainty on the boundary dates, by using 20- 
year ranges instead of fixed dates. 
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Fig. 6. The ChronoLand example: input constraints, tightened ranges, and example of a trace.  
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the tightening operation, as the few input absolute dating estimates 
propagate along the network. The structure of the network thus re
mains unchanged, even if the input absolute chronological estimates 
are later changed (if say, K1 and K2 are to be re-dated to the range 
[1300 − 1400] instead of [1200 − 1300]).  

3. Optimality. The ChronoLand example demonstrated that computing 
the tightened ranges for dates and durations is difficult, even for 
small networks. On larger, life-size Chronological Networks, in 
addition to being tedious and error-prone, such computation is 
virtually impossible without the help of a computer. Algorithmic 
computation of the tightened ranges (see Section 3) guarantees 
optimal, i.e. tightest possible, ranges for each date and duration.  

4. Knowledge discovery. As seen in the ChronoLand example, some 
interesting chronological knowledge sometimes lies hidden within 
the network’s structure, as the fact that only King K2 could have built 
Stratum S2. The formal approach opens the way to the use of algo
rithms to automatically discover such relations.  

5. Tagged chronologies. The computational approach has the potential to 
produce several alternative chronologies for the same network, 
based on inclusion or exclusion of given sets of constaints. More 
precisely, every constraint in the network could be tagged with labels 
describing their type, such as “literary data”, “stratigraphic data”, 
“epigraphic data”, or “astronomical dates”. This is especially inter
esting for complex case studies, involving many different types of 
basic data. As an example, for the chronology of ancient Egypt, one 
could be interested in the effect that an exclusion of astronomical 
dates would have on the overall chronology.  

6. Classification of constraints. The computational approach also allows 
to classify chronological constraints to distinguish between those 
that do or do not impact the global network. For example, the date 
bounds of 1200 and 1300 on the ChronoLand kings have a strong 
impact on the network, since they provide the source of absolute 
chronology for all the computed dates. On the other hand, the 100 
years upper bounds on Strata S1 and S2 of ChronoLand have no 
impact on any of the computed bounds of the network. They can be 

Fig. 7. Example of a non-consistent Chronological Network. The ChronoLand dynasty lasts at most 35 years, while the two strata have a combined duration of at 
least 40 years. This yields a contradiction since the strata are known to be included in the time-span of the dynasty (by the “Starts during” and “Ends during” re
lations), which is too short to accommodate 40 years. 

Fig. 8. The ChronoLand example with an additional 70 years upper bound on King K2’s duration.  
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removed from the model without impacting the results. Spotting 
such “low-impact” constraints is of great chronological interest, 
though not easy to do without a computational tool. 

In conclusion, the proposed approach to chronology makes it 
possible to study complex Chronological Networks in a more rigorous, 
rational, and scientific way. 

3. Mathematical modelling 

This section presents a mathematical formalisation of Chronological 
Networks and shows how to solve the tightening and consistency 
problems algorithmically. We have tried to avoid an excess of mathe
matical formalism, and presented the results with limited mathematical 
notations and no formal proofs. Examples are used in order to help the 
reader grasp the notions at work. Grasping the mathematical model is 
not necessary in order to use the ChronoLog software. Readers with no 
interest in the mathematical modelling of ChronoLog can thus skip 
directly to Section 4. The reader interested in a more formal treatment of 
these results is referred to our previous publication (Geeraerts et al., 
2017). 

We first show how a complete Chronological Network can be 
expressed as a set of inequalities between the boundaries of the Time- 
periods (i.e. start and end dates) (Section 3.1). We then show how this 
set of inequalities can be represented as a graph (Section 3.2), and we 
finally show how the tightening and consistency check problems can be 
solved using graph algorithms (Section 3.3). 

It is worth noting that the techniques presented in this section consist 
in manipulating and analysing simple constraints on the start and end 
dates of the Time-periods. Such techniques have been introduced in the 
field of optimisation and linear programming (Shostak, 1981), and of 
formal verification (Dill, 1989). They have been widely applied in 
several fields of computer science, including computer aided verification 
(Alur and Dill, 1994; Bozga et al., 1998; Behrmann et al., 2004) and 
artificial intelligence (Allen, 1984) (to name a few), but never, as far as 
we are aware of, in the field of archaeology. The underlying algorithms 
for analysing these constraints are standard graph algorithms which 
have been well-studied for several decades (see for instance Floyd, 
1962). 

3.1. The Chronological Network as a set of inequalities 

Let us define B as the set of boundaries (start dates and end dates) of 
all Time-periods of a given Chronological Network. For example, in the 
case of ChronoLand, the Time-periods are S1, S2, K1 and K2, so we have: 

B = {start(S1), end(S1), start(S2), end(S2), start(K1), end(K1),

start(K2), end(K2)}

where start(p) and end(p) represent respectively the beginning and the 
end of the Time-period p. Our goal is to represent a Chronological 
Network as a set of logical constraints involving only boundaries and 
constants. The rules of this representation are given below. 

Time-periods. For each Time-period, we need to encode constraints 
on boundaries and durations. For a boundary b, the absolute time con
straints can have the shape b ≥ k (Lower bound), b ≤ k (Upper bound), 
b ≥ k1 and b ≤ k2 (Range) or b = k (Exact date), with constant values k,
k1, k2. For a Time-period p, its duration is represented as end(p) −
start(p). The duration constraints can thus have the shape end(p)−
start(p) ≥ k (Lower bound), end(p) − start(p) ≤ k (Upper bound), 
end(p) − start(p) ≥ k1 and end(p) − start(p) ≤ k2 (Range), end(p)−
start(p) = k (Exact duration), end(p) − start(p) ≥ 0 (Unknown duration), 
with constant values k,k1,k2. 

Sequences. For each Sequence, we need to encode the fact that the 
end of a Time-period equals the start of the next one. Hence, for each two 
consecutive Time-periods p1 and p2 of a Sequence, we have the 

constraint: end(p1) = start(p2). 
Chronological Relations. Each Chronological Relation defined in 

Section 3 has been formally defined using equations and inequalities in 
Tables 1–4. 

All the information from a Chronological Network can be encoded by 
means of constraints on the boundaries. For example, Fig. 9 provides the 
full encoding of the ChronoLand example as a set of inequality con
straints. The above-defined constraints for Time-periods, Sequences, and 
Chronological Relations need to be combined with “and” logical con
nectors (conjunction) since we need all of them to hold true. This yields 
a large global constraint, as shown in Fig. 9, which exhibits the following 
aspects. First, the constraint is a conjunction of inequalities, in the sense 
that it features only the “and” logical connector. All other operators, 
including “or” and “not” are disallowed. This will be crucial in the 
sequel of the paper, in order to obtain efficient algorithms to analyse 
Chronological Networks. Second, all the elements that are combined by 
means of the “and” operator are inequalities or equalities comparing 
either a single boundary or a difference of two boundaries to a constant 
value (for example, start(p) ≤ k or end(p) − start(p) ≥ k). 

3.2. The Chronological Network as a graph 

In order to analyse Chronological Networks expressed as constraints, 
we will translate these constraints into graphs and rely on standard graph 
algorithms. This section explains how this is being done. 

3.2.1. Normalising the constraints 
The objective of the normalisation procedure is to rewrite the con

straints as a conjunction of simple constraints having all the same basic 
shape: 

b1 − b2 ≤ k,

where b1 and b2 are boundaries in B and k is a constant. Each of these 
simple constraints will be called an atomic constraint. Note that the only 
comparison allowed in those simple constraints is ≤, i.e. all of the 
following are disallowed: ≥, <, > and = . To achieve this normalisation, 
equalities such as end(K1) = start(K2) are being rewritten as a conjunc
tion of two inequalities: end(K1) ≤ start(K2) and end(K1) ≥ start(K2), 
which further rewrites to end(K1) − start(K2) ≤ 0 and start(K2) −

end(K1) ≤ 0. Similarly, strict inequalities such as end(K1) − start(K2) <

k are expressed as non-strict inequalities, i.e. end(K1) − start(K2) ≤ k −
1. In order to normalise absolute date bounds, like end(K2) ≤ 1300, we 
need to add a new boundary to B, called z0, and corresponding to a pre- 
defined origin of time. This origin of time is our reference point, i.e. our 
“date 0”, and needs to be chosen according to the dates that will be 
manipulated in the example. For example, if all our dates fall within the 
26th Dynasty of Egypt (664 BCE to 525 BCE [Kitchen, 2000]), we could 
safely choose z0 to correspond to 700 BCE. In this case, the year 664 BCE 
would be encoded as 700–664 = 36, and the year 525 BCE as 700–525 =
175. The point of setting this reference date is to ensure that all the dates 
that our algorithms will need to consider are not negative. We assume, 
for the rest of the paper, that z0 corresponds to date 0. In this case, the 
upper bound end(K2) ≤ 1300 becomes end(K2) − z0 ≤ 1300, and the 
lower bound start(K1) ≥ 1200 becomes − start(K1) ≤ − 1200 which re
writes to z0 − start(K1) ≤ − 1200. Finally, for each boundary b that does 
not already have a lower bound, we add the constraint that it occurs 
after the origin of time, hence after z0, thus: b ≥ z0, which normalises to 
z0 − b ≤ 0. 

As an example, the normalised constraint for the ChronoLand 
example is given in Fig. 10. Note that the normalisation procedure 
produces a constraint which is equivalent to the original one in the sense 
that the possible values for the boundaries that satisfy the original 
constraint are the same that satisfy the normalised constraint. Clearly, 
all constraints resulting from a Chronological Network can be turned 
into such an equivalent normalised constraint, using the procedure 
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sketched in this section. From now on, we will thus assume that all 
constraints are normalised, i.e. are a conjunction of atomic constraints of 
the form b1 − b2 ≤ k, where b1 and b2 are boundaries (including the 
special boundary z0) and k is a constant. 

3.2.2. Graph representation of the constraints 
Once the global constraint is normalised, we can easily represent it as 

a directed weighted graph (that we henceforth simply call a graph). Intu
itively, a graph is a diagram (see Fig. 11) made up of two kinds of ele
ments: nodes, represented as ellipses, and edges, which are arrows from 
one node to another, bearing a label called the weight of the edge. In our 
case, the graph corresponding to a normalised constraint contains:  

1. One node per boundary in B, and  
2. For each atomic constraint b1 − b2 ≤ k, an edge from b1 to b2 with 

weight k. 

In the case of the ChronoLand example, the graph corresponding to 
the normalised constraint of Fig. 10 is given in Fig. 11. 

3.3. Algorithms for tightening and consistency check 

Let us now explain how the graph representing a given Chronological 
Network helps us solve the tightening and consistency check problems 
defined in Section 2.2. 

3.3.1. Tightening 
Let us consider again the ChronoLand example (which is consistent), 

and let us focus on the inputs regarding king K2 (see Fig. 6a). We know 
that the reign of K2 lasts at least 35 years and ends before 1300. Clearly, 
these two pieces of information allow us to infer that the reign of K2 
must start before 1265. Let us now explain how we can extract this in
formation from the graph (Fig. 11) corresponding to the ChronoLand 
Chronological Network. First, in terms of constraints, we can express the 

Fig. 9. The ChronoLand example presented as a set of logical constraints.  

Fig. 10. The normalised global constraint for the ChronoLand example.  
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inputs as: 

end(K2) − start(K2)≥ 35 and end(K2) ≤ 1300,

which is equivalent to the normalised constraint: 

start(K2) − end(K2)≤ − 35 and end(K2) − z0 ≤ 1300.

Now, observe that, if two inequalities A1 ≤ B1 and A2 ≤ B2 hold, then 
A1 + A2 ≤ B1 + B2 holds as well. We can thus sum inequalities and 
deduce new information from this sum. In our example, this sum is 
shown in Fig. 12 (bottom left), where we deduce that start(K2) −

end(K2)+ end(K2) − z0 ≤ − 35+ 1300, i.e. start(K2) − z0 ≤ 1265, or, in 
words, that the start of the reign of K2 must occur before 1265. 

Now, let us consider the graph equivalent to this constraint: it is 
displayed in Fig. 12, bottom right (considering the solid edges only for 
the moment). The combination of the two atomic constraints start(K2)−

end(K2) ≤ − 35 and end(K2) − z0 ≤ 1300 corresponds to a path visiting 
successively nodes start(K2), end(K2) and finally z0 in the graph. Let us 
defined the weight of a path as the sum of the weights of the traversed 
edges. Then, the weight of the start(K2)→end(K2)→z0 path is − 35+

1300 = 1265, which is exactly the information that we have obtained by 
combining the atomic constraints. We can thus modify our graph by 
adding a new edge from start(K2) (first node of the path) to z0 (last node 
of the path) with weight 1265. We can thus see that each path in the graph 
from some boundary b1 to some boundary b2 corresponds to a combination of 
atomic constraints (from the inputs), involving all the boundaries traversed 
by the path. Such a path can thus be used to infer an upper bound on b1 − b2. 
Then, let us assume for example that there exists another path from 
start(K2) to z0 which is shorter (for example, 1000 instead of 1265). Since 
this path corresponds to another combination of atomic constraints from 
the inputs, it provides a tighter bound on start(K2) − z0. Thus, looking for 
tighter bounds amounts to looking for shorter paths between given pairs 

of nodes. 
The main takeaway message of this example is that there is a corre

spondence between paths in the graph and sets of atomic constraints. 
More precisely:  

1. Every time we have a path with weight w from b1 to b2, this path 
corresponds to a set of atomic constraints that sum up to b1 − b2 ≤ w.  

2. Symmetrically, a set of input atomic constraints that sum up to b1 −

b2 ≤ w means there is a path of weight w from b1 to b2 in the graph. 
The information we can extract from the graph is thus complete: all 
the information given by the atomic constraints is indeed present in 
the graph, and the most precise information on b1 − b2 can be ob
tained by looking for the shortest path between b1 and b2. 

Thus, tightening a Chronological Network amounts to finding all the 

Fig. 11. Graph representation of the global constraint from Fig. 10. The bold path shows the shortest path between z0 and end(K2), which allows us to infer that the 
reign of K2 ends after 1240 (because z0 − end(K2) ≤ − 1240). This bold part corresponds to the trace given in Fig. 6c. 

Fig. 12. From constraints to graphs. The constraints start(K2) − end(K2) ≤ −

35 and end(K2) − z0 ≤ 1300 are translated into the given graph (solid edges 
only), which is an excerpt of the graph in Fig. 11. This information allows us to 
deduce that start(K2) ≤ 1265, where the value 1265 is the weight − 35 + 1300 
of the shortest path from start(K2) to z0. We can reflect this new piece of in
formation in the graph by adding a direct (dashed) edge from start(K2) to z0, 
with weight 1265. 
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shortest paths between each pairs of nodes (or boundaries) in the corre
sponding graph, which is a problem that has been thoroughly studied in 
computer science (Madkour et al., 2017) and for which many efficient 
algorithms exist. This outlines our procedure for tightening: 

Theorem 1  
(Adapted from Dill, 1989). 

Let C be a Chronological Network (with a set of boundaries B), and let G 
be the graph obtained from the normalised global constraint extracted from C. 
Let b1 and b2 be two boundaries from B. Then, the tightest atomic constraint 
on b1 − b2 that one can infer from C is: 

b1 − b2 ≤ SP(b1, b2),

where SP(b1, b2) is the weight of the shortest path from node b1 to node 
b2 in the graph G. 

As an example, the set of all tightest atomic constraints that can be 
extracted from the ChronoLand inputs (Fig. 6) is shown in Fig. 13 as a 
matrix. We have chosen a matrix representation here as drawing the 

graph will all edges, including the ones computed during tightening, 
would make the figure unreadable. For each pair of boundaries b1 and 
b2, the value SP(b1, b2) is presented in row b1, column b2 of the matrix. 

The most relevant results extracted from this matrix are shown in the 
computed ranges of Fig. 6b. For example, the value − 1240 in row z0, 
column end(K2) indicates that z0 − end(K2) ≤ − 1240, i.e. end(K2) ≥

1240, or, in words, that the reign of K2 must end after 1240 (as discussed 
in Section 2.2.2). This is the tightest lower bound on end(K2) that we can 
infer from the inputs. It has been obtained thanks to the path highlighted 
in bold in Fig. 11, which is the shortest path from z0 to end(K2), and also 
corresponds to the trace from Fig. 6c. Observe, however that the matrix 
contains more information than what is presented in Fig. 6b. For 
example, it tells us that start(K2) − end(S2) ≤ − 30, i.e. that end(S2) ≥

start(K2)+ 30, or, in words, that the end of stratum S2 occurs at least 30 
years after the start of K2’s reign. 

3.3.2. Consistency check 
In the discussion so far, we have assumed that the Chronological 

Network under consideration is consistent. We explain how to check 
this. Let us consider again the example of non-consistent network from 
Fig. 7, and let us understand why it is non-consistent using the tech
niques we have discussed so far. The atomic constraints that yield non- 
consistency are as follows (as discussed in Section 2.2.1):   

Summing all these atomic constraints (as we did previously) yields 
the conclusion that 0 ≤ − 5, a clear impossibility. This is witnessed by a 
cycle (i.e. a path starting and ending in the same node) of negative weight 
− 5 in the corresponding graph:   

In the ChronoLand example, which is consistent, the graph contains 
no negative cycle, see Fig. 11. 

These examples highlight the technique to check consistency, as 
introduced by Shostak (1981): a constraint is consistent if and only if its 
corresponding graph has no negative cycle. 

Theorem 2  
(Adapted from Shostak, 1981). 

Let C be a Chronological Network, and let G be the graph corresponding to 
the constraint encoding C. Then, C is consistent if and only if G contains no 
cycle of negative weight. 

Fig. 13. The matrix SP of all-pairs shortest paths for the ChronoLand example. The entry SP(b1, b2) in row b1, column b2 gives the weight of the shortest path from b1 

to b2, i.e. the constraint b1 − b2 ≤ SP(b1, b2), which is the tightest atomic constraint on b1 − b2 that one can infer from the given inputs. 

start(K1) − start(S1) ≤ 0 (S1 starts during K1)

and start(S1) − end(S1) ≤ − 20 and end(S1) − start(S2) ≤ 0 and start(S2) − end (S2) ≤ − 20 (Strata duration)
and end(S2) − end(K2) ≤ 0 (S2 ends during K2)

and end(K2) − start(K2) ≤ 25 and start(S2) − end(K1) ≤ 0 and end(K1) − start(K1) ≤ 10 (Dynasty duration)

start(K1)
0
→start(S1)

− 20
→ end(S1)

0
→start(S2)

− 20
→ end(S2)

0
→end(K2)

− 25
→ start(K2)0

→end(K1)
− 10
→ start(K1).
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3.3.3. Algorithms for all-pairs shortest paths 
Now that we have shown that we can solve both the consistency and 

the tightening problems by computing the shortest paths between all 
possible pairs of nodes in a graph (all-pairs shortest paths, for short), let us 
briefly discuss algorithms to do so. First, note that most algorithms to 
compute all-pairs shortest paths include a test to detect negative cycle. 
That is, the output of such algorithms is either:  

1. “Fail”, when the graph contains a cycle of negative weight. This cycle 
can then be used to provide a trace of non-consistency, i.e. a set of 
constraints that yield a contradiction.  

2. Or, if there is no cycle of negative weight, the length of the shortest 
paths between all pairs of nodes, given for instance under the form of 
a matrix, as in Fig. 13. The algorithm also returns the actual shortest 
paths, which can be used to obtain traces (Fig. 6c) for the new 
computed results. 

Fig. 14. The ChronoLog software display, showing the ChronoLand example.  

Fig. 15. Representation of a time-period in ChronoLog.  
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Many efficient algorithms to compute all-pairs shortest paths exist 
(see Madkour et al., 2017 for a survey). Here, “efficient” means that 
these algorithms run in polynomial time with respect to the size (number 
of boundaries and number of atomic constraints) of the Chronological 
Network, as opposed to exhaustive search algorithms, which run in 
exponential time and are often impractical. For example, in our setting, 
the classical Floyd-Warshall algorithm (Floyd, 1962) runs in time pro
portional to 

⃒
⃒B|3, where |B| is the number of boundaries in the Chrono

logical Network. A more efficient algorithm is Johnson’s algorithm 

(Johnson, 1977), which runs in time proportional to 
⃒
⃒B|2log(|B|) +

⃒
⃒B
⃒
⃒
⃒
⃒A

⃒
⃒, where |A| is the number of atomic constraints in the Chrono

logical Network. In practice, these measures of efficiency indicate that it 
is possible to handle Chronological Networks with thousands of 
boundaries and atomic constraints (see Section 4 below). The next sec
tion presents our software implementation of the algorithms presented 
here. 

4. The ChronoLog software 

ChronoLog is a software utility that allows users to create Chrono
logical Networks (as defined in Section 2) and to modify them. The 
software automatically tests the consistency of the network, and com
putes the tightened ranges of each start date, end date, and duration. 
Fig. 14 shows a general overview of the ChronoLog interface, consisting 
of a main panel depicting the Chronological Network (the ChronoLand 
example in this case), a “Synchronisms” panel displaying all the Chro
nological Relations of the network, a “Tags” Panel showing the tags 
associated to each Sequence (see Section 2.3.2 above), and a status bar 
(more on this below). The main aspects of ChronoLog are briefly pre
sented below. 

4.1. Representation of the network 

4.1.1. Time-periods 
Fig. 15 provides an example of a Time-period as represented in 

ChronoLog. The Time-period features four lines, representing the Time- 
period’s name, start date, end date, and duration. The latter three lines 
have a common structure: the input range, an arrow, the computed 

range. Note that the chronological data are always represented by 
ranges: known dates/durations are represented by ranges with equal 
lower and higher bound, unknown lower/higher bounds are represented 
by question marks. The bounds appear on clickable buttons. Clicking on 
a bound launches a simple dialog enabling to enter a custom value, or 
the “Unknown” value, for the bound (see Fig. 15). Dates B.C.E. are input 
with a minus sign (thus − 1200 for 1200 B.C.E.). The button in the upper 
right corner of a Time-period allows to rename the Time-period, delete 
it, or insert a new Time-period in the same Sequence. 

4.1.2. Sequences 
Sequences are represented by Time-periods stacked on top of each 

other, with time flowing from above to below (see Fig. 16). The top row 
of the Sequence contains the Sequence name, followed by a button to 
delete the Sequence. The second row features a set of buttons allowing 
diverse actions: tagging the Sequence (see below), hiding it, reloading 
the default values of each bound, setting duration bounds for each Time- 
period at once, saving the Sequence to a file (see below), and adding a 
Time-period at the end of the Sequence. Sequences can be added to the 
current network from the menu bar, either by selecting one from the 
ChronoLog library (“Insert → Insert from library”) or by creating a new 
one interactively (“Insert → New sequence”). 

4.1.3. Chronological relations 
By language abuse, and following common practice, we refer to all 

Chronological Relations in ChronoLog as “synchronisms”. The addition 
of a Chronological Relation to the network is done through the “Syn
chronisms” panel on the right side of the ChronoLog window. This panel 
features the list of current Chronological Relations (see Fig. 17) and 
allows to add a new Relation by choosing two Time-periods in the 
associated combo boxes and clicking on “Choose a synchronism” to 
choose the type of Relation. This displays a dialog featuring all the types 
of Chronological Relations defined in Section 2 above, with both a 
graphical depiction and the formal definition of the Relation. The 
Relation is then added to the network via the “Go” Button. Relations can 
also be deleted or temporarily hidden from the network via the “Delete” 
and “Hide/Show” buttons. Relations can also be added directly between 
two Time-periods by joining the two Time-periods with the mouse, 
which will automatically draw a line between them and display the 
Chronological Relations choice dialog. Finally, a Relation can be clicked 
on, which displays a dialog allowing to modify, hide or delete it. 

4.1.4. Input/output 
The current network can be saved to a file (“File → Save”) and later 

reloaded into ChronoLog (“File → Open”) as a new model. Furthermore, 
components of a network (i.e. sets of Sequences and Chronological Re
lations) can also be loaded from a file or from the ChronoLog library, in 
order to add them to the current model (“Insert → Insert from file” or 
“Insert → Insert from library”). These files have a JSON format, and a “. 
clog” extension. The chronology computed by ChronoLog can also be 
exported to a CSV (comma-separatedvalues) file (“File → Export 
(CSV)”), or to an image file representing the whole chronological 
network (“File → Export as image”). 

4.2. Main functionalities 

4.2.1. Consistency 
At each modification of the network (removal/addition of a bound or 

a Chronological Relation), ChronoLog automatically checks the consis
tency of the network. In case of a non-consistent network, an error 
message is displayed, as well as a trace providing a list of conflicting 
constraints. 

4.2.2. Tightening 
At each modification of the network (removal/addition of a bound or 

a Chronological Relation), if the consistency check has been successful, 

Fig. 16. Representation of a sequence in ChronoLog.  
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Fig. 17. Choice of a chronological relation in ChronoLog.  

Fig. 18. Result of re-tightening the network after updating the maximum duration of K2 to 70 years.  
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the tightening procedure is launched automatically, and the computed 
bounds are updated for each Time-period. The bounds that now have a 
different value than before are shown in red, and the number of modi
fied Time-periods is displayed in the status bar. Fig. 18 provides the 
example of ChronoLand with an updated input of maximum 70 years for 
K2 (see Section 2.2.1). The updated computed strata durations (upper 
bound of 60 instead of 80) are shown in red, and the status bar indicates 
“3 periods modified” (including the updated reign of K2). 

4.2.3. Traces 
Each computed bound is clickable, in which case the full trace for the 

bound is displayed. Fig. 19 provides the full trace for the 1240 lower 
bound for the end date of K2. This trace conforms to the one provided in 
Section 2.2.2. 

4.2.4. Tagging 
In addition to the above-described features, ChronoLog also imple

ments a powerful tagging mechanism that allows to associate several 
keywords (or tags) to each Sequence, and to activate or de-activate all 
Sequences bearing a given tag at any moment. This allows the user to 
consider, in a single Chronological Network, several sources of prior 
knowledge and to test the potential implications of these different hy
potheses. This is realised through the “Tags” panel, located at the bottom 
of the ChronoLog window, where each tag can be checked or unchecked, 
resulting in hiding/showing the associated Sequences and rerunning the 
consistency check and tightening process. 

4.3. Discussion 

4.3.1. ChronoLog and radiocarbon dating 
Radiocarbon measurement are the main source of absolute dating 

used by archaeologists today. We discuss here how to incorporate 
radiocarbon data into ChronoLog models. 

The laboratory results of radiocarbon measurements need calibra
tion to be expressed as absolute calendar dates. Since ChronoLog deals 
with calendar dates, its input should consist of calibrated radiocarbon 
readings. The calibration can be done using standard tools like OxCal 
(Ramsey, 1995). Following the radiocarbon procedure, the radiocarbon 

Fig. 19. Trace for the 1240 lower bound for the end date of K2.  

Fig. 20. Archaeological strata with radiocarbon ranges (without duration 
constraints): Strata K-6 and K-5 at Megiddo, Israel (Finkelstein et al., 2017, 
p. 274). 

Table 6 
Standard chronology of the Egyptian 26th dynasty (Kitchen, 2000, p. 50; Hor
nung et al., 2006, p. 494).  

King Dates Duration 

Psammetichus I 664–610 54 years 
Necho II 610–595 15 years 
Psammetichus II 595–589 6 years 
Apries 589–570 19 years 
Amasis 570–526 44 years 
Psammetichus III 526–525 1 year  
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result of a measured sample is expressed as a full probability distribution 
(usually not a normal distribution) or by the 68% or 95% confidence 
level limits for the date. The calibrated radiocarbon results for the 
boundaries of strata and archaeological periods consist of TPQs, TAQs 
and date-ranges. These data can be inserted as is into ChronoLog (see 
Fig. 20). Yet, the ChronoLog consistency check and tightening opera
tions are not probabilistic (see Section 2.2), hence these bounds are 
considered as deterministic input, without an associated probability. 
The final computed ranges should be seen as an “if-result”, that is: “if the 
radiocarbon bounds are correct, as well as the other constraints of the 
model, then the computed ranges are the tightest possible ones satisfying 
all the input constraints”. 

Often, Bayesian modelling is used to determine the dates of samples, 
using priors that take into account historical constraints, order of layers, 
synchronisation of time between strata, etc … Such constraints can be 
modelled in ChronoLog as well. In case such modelled radiocarbon dates 
are used, it is mandatory to make sure that the ChronoLog constraints do 
not contradict any of the Bayesian prior assumptions. A safer approach 
would be to include only unmodelled radiocarbon dates (68% or 94% 
confidence level limits) into ChronoLog. A possible exception to this rule 
could be the inclusion of some fixed identical priors in both OxCal and 
ChronoLog, like succession of archaeological strata, which are not 
meant to be changed in the ChronoLog model. 

4.3.2. Notes 
Units. ChronoLog currently uses year-precision, meaning that only 

whole years can be encoded (no months, days, or fractional years). The 
algorithms presented in this paper can also be used to attain day- 
precision (with fractional years and support for leap years), by using 
the day as a the computational unit in the algorithms, a feature we leave 
for future work. 

Efficiency. ChronoLog has been shown to run fast even on large 

Chronological Networks. An experiment on a large network, featuring 
over 75 Time-periods, 100 Chronological Relations and 100 duration/ 
date constraints, had the consistency check and tightening operations 
run in less than one second, on a simple laptop computer running an 
Intel Core M-5Y10c processor at 0.80 GHz. 

Availability. ChronoLog is freely available for non-commercial use. 
It is written in the Java programming language, and runs on any plat
form (Windows, MacOS, Linux, …) having a Java installation (https:// 
www.java.com/en/download/). The base distribution of ChronoLog 
includes a library of standard chronological sequences for pharaonic 
Egypt and the Ancient Near East. A webpage for ChronoLog is available 
at http://chrono.ulb.be/, from which the software can be downloaded at 
no cost. If you use ChronoLog, or publish chronological results obtained 
with the help of ChronoLog, please include a link to the utility’s web 
page, and a reference to this article. 

Table 7 
Set of chronological constraints used to reconstruct the chronology of the Egyptian 26th dynasty (see Appendix for full 
details). 

Table 8 
Chronology computed by ChronoLog (see Appendix, Fig. A.21). All the reign- 
lengths have been precisely computed, except Pammetichus III (0–1 years). 
The resulting chronology floats by only one year, with the dynasty beginning in 
664 or 663 B.C.E.  

King ChronoLog result 

Start End Duration 

Psammetichus I 664–663 610–609 54 y. 
Necho II 610–609 595–594 15 y. 
Psammetichus II 595–594 589–588 6 y. 
Apries 589–588 570–569 19 y. 
Amasis 570–569 526–525 44 y. 
Psammetichus III 526–525 525 0-1 y.  
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5. Case study: Egyptian 26th dynasty 

We present a case study related to the Egyptian 26th dynasty 
(Table 6). We chose a well-known chronology to demonstrate how 
ChronoLog can be used to reconstruct a chronology from primary data, 
and to assess the impact of specific inputs on that chronology. A more 
complex archaeological case study, combining stratigaphic, ceramic, 
radiometric, and historical data can be found in (Levy et al., in press). 

5.1. Data 

Egyptologists have established the chronology of Dyn. 26 based on 
the historical fixed point of 525 B.C.E. for the dynasty’s end, combined 
with a reconstruction of the reign durations (Hornung et al., 2006, p. 
267–268).1 These durations have been deduced from a combination of 
sources:  

1. Highest attested regnal years. Ancient Egyptian dates start with 
the regnal year of the current king (starting at Year 1), followed by a 
month and a day. Only for Psammetichus II does an ancient 
inscription provide the exact reign-length. For other kings, the 
highest attested year provides only a minimum reign-length. For 
example, Amasis’s highest attested year 44 implies a reign of at least 
43 full years. 

2. Funerary stelae. Funerary stelae2 sometimes mention the de
ceased’s birth date, death date, and lifespan. When the birth and 
death occurred during different reigns, this information can help fix 
the duration of the reigns. Egyptologists used this technique to 
deduce the precise reign-lengths of Psammetichus I, Necho II, and 
Apries.  

3. Herodotus and Manetho. The ancient historians Herodotus and 
Manetho3 provide the full sequence of Dyn. 26 kings, as well as 
alleged reign-lengths. Egyptologists have relied on this source for 
fixing the reign-lengths of Amasis and Psammetichus III. 

Table 7 summarises all the relevant data (see Appendix for full 
details). 

5.2. Reconstructing the chronology 

We built a ChronoLog model containing all the above-described 
constraints (see Appendix, Fig. A.21). The results are shown in 
Table 8. ChronoLog computed a precise duration for each king, except 
Psammetichus III (set to 0–1 years). The resulting chronology has a one- 
year uncertainty, with the dynasty beginning in 664 or 663 B.C.E. The 
later date (663 B.C.E.) was the standard date for the start of the dynasty 
until the late 1950s4 (see for example Kienitz, 1953, p. 157). It was later 
abandoned in favour of 664 B.C.E. based on an astronomical argument 
by Parker (1957). This higher date implies a one-year duration5 for 
Psammetichus III. Adding this constraint to our model provides the 
current standard chronology for the dynasty (see Appendix, Fig. A.22). 

5.3. Testing hypotheses 

ChronoLog allows to test the precise impact of each piece of data. For 
example, which funerary stela determines the duration of which king? 
Are all stelae truly necessary? If not, which ones are indispensable? 
ChronoLog can easily answer such questions by excluding specific data 
from the model using the Sequence hiding feature (see Section 4.1). A 
simple experiment yields the following insights:  

1. Apis Bull III is indispensable for establishing the precise duration of 
Psammetichus I. That is, hiding Bull III makes us loose the precise 54- 
year duration of the king.  

2. One of the two stelae among the Priest Psammetich and the other 
Psammetich is necessary in order to fix the duration of Apries. That 
is, removing one of them from the model has no effect, but removing 
both makes us loose the precise 19-year duration of Apries.  

3. The complete chronology can be reconstructed using only 2 out of 
the 5 funerary stelae, namely Apis Bull III and the Priest Psamme
tichus (see Appendix, Fig. A.23). In other words, the other stelae 
offer only redundant information (but are nevertheless useful for 
providing greater robustness to the model).  

4. Hiding the contributions of Herodotus and Manetho makes us loose 
the precise 44-year duration for Amasis and strips us of a lower 
bound (earliest date) for the start date of the dynasty (see Appendix, 
Fig. A.24). In other words, the funerary stelae alone are not enough 
for setting Amasis’s precise duration. 

5.4. Discussion 

The chronology reconstructed here with ChronoLog was historically 
obtained by manual computation (see concrete examples in Gardiner, 
1945, p. 17–18; Kienitz, 1953, p. 153–157; Hornung et al., 2006, p. 
466). Also, the impact of specific chronological data was formerly only 
manually assessed (see for example Kienitz, 1953, p. 155–156). Chro
noLog enabled us to perform both kinds of operations in a simpler and 
automated way. Note that the example of Dyn. 26 is small and hence still 
manually computable. Yet, it illustrates the full potential of ChronoLog 
for building and assessing chronologies, especially for larger data sets, 
where manual treatment would be impracticable. 

It is also interesting to notice the coherence of the raw Egyptological 
data: a change of dates or duration of even one year in most of our 
funerary stelae would render the model inconsistent. This pleads in 
favour of the trustworthiness of the chronological information provided 
by these stelae. ChronoLog can thus also be used to check the consis
tency of primary sources, and to detect any incorrect chronological 
claims found therein. The full Dyn. 26 model is available on the Chro
noLog web site (http://chrono.ulb.be/), enabling readers to run the 
above-described experiments by themselves. 

6. Conclusion 

This paper introduced the notion of Chronological Network, a 

1 The date of 525 B.C.E. for the end of Dyn. 26, marked by the Persian invasion of Egypt, is the prevalent view (see Depuydt, 1996 for a slightly earlier dating 
(527-525 B.C.E.) and von Beckerath, 2002 for a rebuttal of this view).  

2 The relevant stelae (see Table 7) concern individuals and Apis bulls, sacred bulls mummified and buried with full honors, including funerary stelae.  
3 Egyptologists use here Africanus’s version of Manetho’s epitome rather than Eusebius’s. Note also that the latter does not feature King Psammetichus III (Manetho, 

1940, p. 171–173).  
4 The then-standard date of 663 B.C.E. was based on slightly different data: a 43-year reign of Amasis and a one-year reign of Psammetichus III (see Kienitz, 1953, 

p. 156–157). The latter was based on papyri allegedly mentionning a Year 2 of Psammetichus III, but now reattributed to the later king Psammetichus IV (Cruz-Uribe, 
1980; Vleeming, 1991, p. 3–4).  

5 Parker used an astronomical argument to show that Amasis’s reign started in 570 B.C.E. rather than 569 B.C.E., resulting in 664 B.C.E. for the start of the dynasty. 
He worked on the basis of 43–44 years for Amasis and one year for Psammetichus III. The argument for the latter duration is now outdated (see note 4) but Parker’s 
astronomical argument still applies here, since our framework (44 years for Amasis and 0–1 years for Psammetichus III) implies the same uncertainty as before (570- 
569 B.C.E.) for the start of Amasis. 
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powerful formalism for representing chronological data organised as a 
set of Sequences, composed of Time-periods sharing Chronological Re
lations with each other. The simplest such relation is that of contempo
raneity, where two Time-periods have at least one unit of time in 
common. Our model allows to specify many other types of Chronological 
Relations, both synchronic and asynchronic (see Tables 1–4). The 
Chronological Networks model further allows one to specify constraints 
on the start date, end date, and duration of the Time-periods, expressed 
as exact values, bounds, or ranges. The model enables archaeologists to 
present their data and ground hypotheses in a clear, rigorous and 
complete fashion. 

Moreover, we have shown how to formally and automatically anal
yse Chronological Networks, by defining two basic and important op
erations, namely consistency check and tightening. The consistency check 
operation checks whether the model features a contradiction, and the 
tightening operation allows one to obtain the most precise possible 
chronological estimate for each boundary and duration, expressed as a 
range. 

We have shown how a chronological network can be encoded as a 
mathematical object called a directed weighted graph, and how graph 
algorithms can be used to solve the tightening and consistency check 
problems efficiently. This approach builds an important link between 
the field of archaeological chronology and the field of computer science, 
where the sub-fields of artificial intelligence, combinatorial optimisa
tion and formal methods have developed a rich set of models and al
gorithms for the study of time. The applicability of such tools for 
archaeological problems has still been insufficiently addressed, and this 
paper is intended as a step in this direction. 

We have implemented our techniques in a tool called ChronoLog, 
which is freely available to the archaeological community. This tool 
implements the tightening and consistency check operations, and thus 
allows one to compute the most precise chronological information that 
can be inferred from a given Chronological Network. To the best of our 
knowledge, no efficient and complete model or software solution to this 
end has been introduced before. 

Finally, we have applied our methodology to a practical-case study, 
showing how the absolute chronology of the Egyptian 26th dynasty can 

be reconstructed from primary data using ChronoLog, and how the tool 
can be used to assess the precise impact of each piece of input data. 

In future works, we intend to investigate other kinds of information 
that could be automatically extracted from Chronological Networks. For 
example, one could be interested in discovering automatically all the 
constraints and relations that have no impact on the final tightened 
ranges and to automatically remove them from the network in order to 
keep a minimal “core” set of chronological constraints. Another inter
esting problem is the definition of a robustness index, which expresses 
the strength of a given bound. This index can be defined as a function of 
the number of different paths in the network that ensure the given 
bound. The computation of such robustness indexes can add a significant 
quantitative aspect to the results, enabling to differentiate between 
“stronger” and “weaker” results. A third important application would be 
to query the model directly in order to ask which precise Chronological 
Relations hold true between two given Time-periods. A final interesting 
trail would be to investigate how our deterministic approach could be 
combined with probabilistic knowledge, in order to add a further layer 
of uncertainty on the data, in addition to the one currently represented 
by deterministic ranges. We intend to address these questions in future 
papers, both within our theoretical framework of Chronological Net
works, and also as part of the ChronoLog software. 
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Appendix A. Details of the Dyn. 26 case study 

Appendix A.1. Dataset  

Table A.9 
Highest attested regnal years from contemporary Dyn. 26 inscriptions (see Helck and Westendorf, 
1982, 1166; Hornung et al., 2006, p. 281–282; Depuydt, 1996, p. 186). All kings are assigned a 
minimum duration, except Psammetichus II, who has an exact duration, since an inscription provides 
his exact date of death. Note that Egyptian regnal years corresponded to civil calendar years, ranging 
from one New Year’s Day to the next. The predating system was used in that period, meaning that 
when a king died in a given year, the remaining months until the next New Year’s Day were counted 
as Year 1 of the new king (Gardiner, 1945; Hornung et al., 2006, p. 461–463). When counting reign 
durations using whole years, that last year of the deceased king was attributed to the new king. Thus 
Psammetichus II, who died in the course of his seventh year, is attributed 6 years of reign (rather than 
7).  

King Highest attested regnal year ChronoLog constraint 

Psammetichus I 55 at least 54 years 
Necho II 16 at least 15 years 
Psammetichus II 7 (year of death) 6 years 
Apries 20 at least 19 years 
Amasis 44 at least 43 years 
Psammetichus III None None      
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Table A.11 
Dynasty 26 reign durations by Herodotus (II.157–161, III.10–14) and Manetho (Africanus) (Manetho, 1940, p. 169–171). Only the durations of Amasis and Psam
metichus III are used in the ChronoLog models. Psammetichus III’s reign of 6 months is set to 0–1 years in the ChronoLog constraint, as a 6 months reign can count for 
either 0 or 1 year in the Egyptian predating system, depending on whether the reign started in the first half or the second half of the year (see caption to Table A.9).  

King Herodotus Manetho ChronoLog constraint 

Psammetichus I 54 years 54 years Not used 

Necho II 16 years 6 years 

Psammetichus II 6 years 6 years 

Apries 25 years 19 years 

Amasis 44 years 44 years 44 years 

Psammetichus III 6 months 6 months 0–1 years   

Table A.10 
Funerary stelae of Apis Bulls and individuals spanning several reigns (adapted from Kienitz, 1953, p. 153–157). These inscriptions help set the precise duration of kings 
Psammetichus I, Necho II and Apries. The dates and durations in the stelae are given in day precision (except for the stela of Besmaut). The following example il
lustrates how they were converted to whole years in the ChronoLog constraints. Apis Bull III was born in Year 53 of Psammetichus I (Month 6, Day 19), died in Year 16 
of Necho II (Month 2, Day 6) and lived 6 years, 7 months and 17 days. In the ChronoLog constraint, he is assigned 17 years of life, because adding 7 months and 17 days 
to his birth date (Month 6, Day 19) yields an additional complete year, after counting the initial 16 years. Such is also the case for the priest Psammetichus and the other 
Psammetichus, but not for Apis Bull IV. Regarding Besmaut, the absence of months and days in the dates and duration obliges us to set a range of 99–100 years for his 
reign, as we do not know if the sum of the fractional parts of his birth date and duration exceeded a year. Finally, note that the ChronoLog constraint for the start of Apis 
Bull III is “starts 52 years after the start of Psammetichus I” (rather than 53 years), since regnal years start at 1 rather than 0. The same rule holds for the other start and 
end years.  

Name Birth Death Duration ChronoLog constraints 

Apis bull III Year 53 of Psam. I (Month 6, Day 19) Year 16 of Necho II (Month 2, Day 6) 16 years, 
7 months, 
17 days 

Starts 52 years after the start of Psam. 
I 
Ends 15 years after the start of Necho 
II 
Duration = 17 years 

Apis bull IV Year 16 of Necho II (Month 2, Day 7) Year 12 of Apries (Month 8, Day 12) 17 years, 
6 months, 
5 days 

Starts 15 years after the start of Necho 
II 
Ends 11 years after the start of Apries 
Duration = 17 years 

Priest 
Psammetichus 

Year 1 of Necho II (Month 11, Day 1) Year 27 of Amasis (Month 8, Day 28) 65 years, 
10 months, 
2 days 

Starts 0 years after the start of Necho 
II 
Ends 26 years after the start of Amasis 
Duration = 66 years 

Other 
Psammetichus 

Year 3 of Necho II (Month 10, Day 1 or 
2) 

Year 35 of Amasis (Month 2, Day 6) 71 years, 
4 months, 
6 days 

Starts 2 years after the start of Necho 
II 
Ends 34 years after the start of Amasis 
Duration = 72 years 

Besmaut Year 18 of Psam. I (no months or days 
given) 

Year 23 of Amasis (no months or days 
given) 

99 years (no months or days 
given) 

Starts 17 years the after the start of 
Psam. I 
Ends 22 years after the start of Amasis 
Duration = 99–100 years   
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Appendix A.2. ChronoLog models  

Fig. A.21. ChronoLog model for Dyn. 26 (with 0–1 years for Psammetichus III).   
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Fig. A.22. ChronoLog model for Dyn. 26 (with 1 year for Psammetichus III).      
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Fig. A.23. Same model as Fig. A.22, but without Apis Bull IV, Besmaut and the “other” Psammetich. The resulting chronology is not affected.   
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Fig. A.24. Same model as Fig. A.22, but without Herodotus’s and Manetho’s reign durations. The resulting chronology has no maximum duration for Amasis and no 
lower bounds for the dates of most pharaohs. 
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